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The Flow Instability Over the Infinite Rotating Disk 

Yun-Yong Lee, Young-Kyu Hwang*, Kwang-Won Lee 
School o f  Mechanical Engineering, Sungkyunkwan Univeristy, 

300 Chunchun-dong, Jangan-gu, Suwon 440-746, Korea 

The hydrodynamic instability of the three-dimensional boundary layer on a rotating disk 

introduces a periodic modulation of the mean flow in the form of stationary cross flow vortices. 

The instability labeled Type II by Failer occurs first at lower Reynolds number than that of well 

known Type I instability. Detailed numerical values of the amplification rates, neutral curves 

and other characteristics of the two instabilities have been calculated over a wide range of 

parameters. Presented are the neutral stability results concerning the two instability modes by 

solving the appropriate linear stability equations reformulated not only by considering whole 

convective terms but also by correcting some errors in the previous stability equations. The 

present stability results agree with the previously known ones within reasonable limit. Conse- 

quently, the flow is found to be always stable for a disturbance whose dimensionless wave 

number is greater than 0.75. Some spatial amplification contours have been computed for the 

stationary disturbance wave, whose azimuth angle e =  11.29 ° to 15 ° and ['or the moving distur- 

bance wave, whose azimuth angle e =  12.5 ° to 15 °. Also, some temporal amplification contours 

have been computed for the stationary disturbance wave, whose azimuth angle e =  11.29 ° to 15 ° 

and for the moving disturbance wave, whose azimuth angle e =  12 ° to 15 °. The flow instability 

was observed by using a white titanium tetrachloride gas over rotating disk system. When the 

numerical results are compared to the present experimental data, the numerical results agree 

quantitatively, indicating the existence of the selective frequency mechanism. 
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Nomenclature  
A Constant physical wave number 

As Spatial amplification 

AT Temporal amplification 

B Constant physical frequency 

C cos e 

Co " Coriolis parameter, C o = 2 - R o - R 0 2 = 2  

Cp ; Wave velocity, I~R/aR 

D ~ A characteristic boundary layer depth, 
D = ( ~ / c o ~ )  ,,2 

D1 " Boundary-layer thickness, (Dr)~/2 
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Scaling factor [O(1)]  

Radius of a disk, r = r / D  

Reynolds number, R e = A w r D / u  

Rossby number, Ro=Aco/coD (for Karmfin 

Boundary-Layer, Ro = - 1) 

: sin e 

: Axial coordinates, z = ~ / D  

Greek symbols 
a Complex wave number, a : a D  

/~ Complex wave frequency, /~=/~/a)D 

c~ An angle of the new oriented coordinate 

system, 6'= e +  n'/2 

e The azimuth angle of disturbance wave 

Radial components of perturbation vorticity 

eq. 
r] Tangential components of perturbation vor- 

ticity 
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rT= : Outer of the boundary-layer 

v' : Kinematic viscosity (cm2/sec) 

Aco : A relative angular speed of fluid, 
A~)= -- u)D 

WF : Angular velocity of fluid 

COo ; Angular velocity of disk 

Subscripts 
c Critical 

D Disk 

F Fluid 

1 Imaginary value 

R Real value 

r With respect to radius, O/Or 
t With respect to time t, O/8t 

y With respect to y, O/8y 
z With respect to z, 3/Oz 

0 : With respect to 0, a /00  

oz : Outer region of the boundary layer 

1 : Type I instability 

2 : Type II instability 

Superscripts 
: Dimensional 

I. Introduction 

The hydrodynamic stability over the rotating 

system has been investigated by many scientists 

in order to understand the fundamental mec- 

hanism of 3-dimensional boundary-layer transi- 

tion process. Those studies have been performed 

by Wilkinson and Malik (1985), Failer (1991), 

Kohama and Suda (1993), and, Lingwood (1997). 

Various types of flows belong to this category. 

As an example, the stability and transition of 

rotating flows have been related to aerospace, me- 

teorology, marine applications and similar phe- 

nomena over swept-back airfoils such as an im- 

peller and transition process over the rotating 

watbr surface. 

The rotation of flow system dramatically affects 

the stability characteristics of flows at various 

physical situations. After the famous exact solu- 

tion for the KS.rmfin boundary-layer flow were 

obtained by Sparrow and Gregg (1960), the pro- 

gress made in stability theory and experiment for 

rotating flows has been explosive in the past deca- 

des. Rogers and Lance (1960) generalized ordi- 

nary differential equations for the flow near a 

rotating disk, assuming that the fluid moves with 

an angular velocity at infinity. The stability an- 

alysis of Lilly (1966) and Failer and Kaylor 

(1966) for the Ekman layer flow revealed that the 

inclusion of Coriolis term in the stability analysis 

for stationary disturbance wave yields the signifi- 

cant increment of the critical Reynolds number, 

Rec,~ (i.e., Type I instability). Also, they found 

that another mode of instability (i.e., Type II 

instability) for moving disturbance waves, caused 

by the Coriolis force, exists at much lower value 

of critical Reynolds number Rec.2 compared to 

those of stationary disturbance waves. 

Some examples of the stationary disturbances 

are concerned with the Type I instability des- 

cribed as below. The Kfi.rmfin boundary-layer 

transition on a rotating disk was first studied by 

Smith (1947) using the hot-wire technique. He 

observed that sinusoidal disturbances appear in 

the disk boundary-layer at sufficiently large Rey- 

nolds numbers. Approximately 32 oscillations 

were observed within a disk rotation period and 

his numerical analysis indicated that the distur- 

bances propagate at an angle of about 14 ° relative 

to the outward drawn radius (where the direction 

of disk rotation defines positive angle). Later, 

Gregory et a1.(1955) observed 28--31 spiraling 

outward vortices over a rotating disk at an angle 

of about 14 ° by using the china-clay technique 

for flow visualization. These vortices, which ap- 

peared stationary relative to a disk, were first 

observed at the local Reynolds number Re=430, 

and transition to turbulence occurred near Re-~. 

530 (see also Gregory and Walker (1960)). 

The stationary disturbance wave established in 

a rotating disk was subsequently studied by lots 

of investigators. Kobayashi et al. (1980) perform- 

ed a theoretical analysis in which some of the 

effects of Coriolis force and streamline curvature 

were considered. They computed the value of 

Rec,1 as 261 and observed that the number of 

spiral vortices is 31 or 32 at R e = 2 9 7  and that the 

gradient of vortex axis was decreased from 14 ° 

to 7 ° as R e  was increased. Malik et a1.(1981) 

numerically predicted that the critical Reynolds 
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number  Rec,1, for establishment of stat ionary 

dis turbance wave is 287 and these vortices spiral 

outward at a critical azimuth angle of about  

ec,x =-11.2 ° (Note that the recomputed values of 

Malik (1986) were Rec,1=285.36 and ec,~ = 

11.4°). They observed that there are about  21 

vortices at R e = 2 9 4 .  Their  calculated value of 

Rec,2 for Type II moving disturbance wave is 

about  49. Failer  (1991) considered the effects of 

Coriolis force and streamline curvature in his 

stability analysis and obtained the neutral  stabili- 

ty results, e.g, critical Reynolds number  Rec,1 = 

285.3, critical wave number  ac,1=0.378 and cri- 

tical azimuth angle ec,~ =13.9 ° for Type I insta- 

bility, while Rec,2=69.4, ac,z=0.279, and ec,z = 

--19.0 ° for Type II instability. 

The usefulness of the e n method tbr predicting 

t ransi t ion in two-d imens iona l  and axially sym- 

metric flows is well established. The generally 

accepted value of n is 9. Accordingly,  the exist- 

ence of a t ransi t ional  flow is within 4 1 0 < R e <  

590 by Chin  and Litt 's experiment (1972). The 

stability analysis of  rotating disk flow, (i.e., the 

Kfirmfin boundary- layer )  in which the effects of 

Coriolis  force and streamline curvature are in- 

cluded was performed by Hwang and Lee (2000). 

Their  study shows that the flow is always stable 

for a dis turbance whose dimensionless wave num- 

ber a is greater than 0.75 (i.e., if 0)D=0.325 rps, 

and whose corresponding physical wave number  

&>4.27cm-~) .  Also, they showed that the az- 

imuth angle of disturbance wave which spiral 

outward tend to be decreased from 13.2 ° to 9 ° as 

the local Reynolds number  is further increased 

from Rec,~. 
In this study, the spatial and temporal  stability 

analyses and experiments have been performed. 

Spatial amplif icat ion contours have been com- 

puted both the stat ionary dis turbance wave (i.e., 

Cp=0.0)  at the azimuth angle of e =  11.29 °, 12 °, 

13.3 ° and 15 ° and the moving disturbance wave 

at the azimuth angle o f e = 1 2 . 5  °, 13.3 and 15 ° . As 

a consequence of numerical  results, the value of 

t ransi t ion point  is predicted as Re~.588 at e = 

13.3 ° corresponding to the moving disturbance 

amplification of e ~°. 
Also, temporal amplif icat ion contours have 

been computed for the stat ionary dis turbance 

waves from the azimuth angle of e = 11.29 °, 12 °, 

13.3 ° and 15 ° and the moving disturbance wave 

at e = 1 2  °, 13.3 ° and 15 ° . As a consequence of 

results, the value of t ransi t ion point  is predicted 

as R e ~ 5 3 0  at e = 1 2  ° corresponding to the dis- 

turbance amplif icat ion of e 1°. 

The point  of instabil i ty value is suggested as 

R e ~ 4 6 3  ( r =  12.7 cm) at e = l  1.5 ° corresponding 

to the moving disturbance amplif icat ion of  e 7 and 

as constant  physical wave number  A = 4 . 5  and 

spatial amplification As=3 .5  corresponding to 

the stat ionary disturbance amplif icat ion contours. 

2. The Governing Equations and 
Numerical  Method 

2.1 Base flow equation 
The steady, laminar,  axi-symmetric  flow of an 

incompressible viscous l iquid,  which occupies the 

semi-infini te  region on one side of the rotating 

infinite disk, was first discussed by von Kfirmgm 

(1921). The similarity equat ions for the steady 

laminar  base flow of Kfirmgm boundary- l aye r  

(with the rotat ion system in Fig. l) are well 

k n o w n ;  see, Faller  (1991). Assuming an axi- 

symmetrical similarity solut ion to the base flow 

with the dimensionless velocities of x, y, z com- 

ponents F ( z ) ,  G(z )  and H ( z )  

U = A w r F ,  V = A w r G ,  W = A w D H  (1) 

and scaling lengths by D and time by rotat ional  

disk speed coo -1, the radial  and tangential  base 

flow equations are 

z 2 

6O D 

X 

Fig. 1 Rotation system 
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Fa + HFz  - GZ W 2G + Fzz = 1 (2a) 

2FG + HG~ - 2 F -  G.~ = 0 (2b) 

The continuity equation is 

H = - 2 f 0 " F  (z) dz  (3) 

The boundary conditions are 

F (0 )  = G ( O ) = H ( 0 ) = 0 ,  F ( o o ) = 0 ,  G(oo)=1  (4) 

The boundary-value problem (2) - (4) was solved 

on the interval [0, r/,.] with z/~----40~240. Name- 

ly, the base flow solution is crudely obtained first 

by using a finite difference method (FDM).  Then, 

a computing code COLNEW (Bader and Ascher, 

1985), which was designed to accurately solve 

two-point  boundary-value problems, was used to 

find more accurate numerical solution. At that 

time, the crude solution was used only to provide 

the initial guess for COLNEW. The resulting 

solutions are stored as B-spline coefficients in 

order to be called during the stability computa- 

tion. 

2.2 The linear stability equations 
Hwang and Lee (2000) reformulated the gover- 

ning stability equation prepared by Failer  (1991). 

From their non-dimensional  perturbation equa- 

tions, the rectangularized horizontal component 

of vorticity equations are then 

~t +Re (F& + G & -  Fzux- G.u~- G=w) 
+ Ro(H& + H.~e- F v . -  F . v -  2 Gu. -G.u  + Fwy) (5a) 

- C o u ~ = V ~  

a¢ a¢, W = ~ ,  V = - - ~  - ~e=V2~b (6) 

where ^ will be deleted for convenience. The 

perturbation velocity u and stream function ~b 

may be assumed as 

u(y, z, t )= U(z) exp i[ (gtR + i&) y -  (SR + i~,) t] 

if(y, z, t) =O(z)exp i [ (~e+i&)y- (~R+ i~x)t] 
(7) 

The reoriented equations with expression of Eqs. 

(6)-  (7) are 

U" (z) -R°HU'(z) +iII3+ Re(FC +GS)a+i(R°F-aZ) I U(z) (83) 
- (2RoG + Co) 0' (z) - Re (- F'S + G'C) ia~) (z) =0 

¢"-RoH O'+i[g+Re(FC+GS) a+i(RoH'+RoF+2aa)IO" 
-Ro[F'-Ha ~- C (F'C + G'S) ] 0' 
-[ il~a~ + Re(EC + GS) ic? + Re(E" C + G" S) ia (8b) 
+RoH'~ +Ro~S(FS-GC) + Ro~C(GC-FS) +a'] 
+ (2RoG+ Co) U'-RoIS(FC+G'S) -2G'I U=0 

In order to specify the problem completely, bo- 

undary conditions are applied to the eigenfunc- 

tions U(r/) and ~(~7). Evidently, the velocity 

disturbances quantities u, v and w must be zero 

at the rotating disk surface and at a large distance 

out (77 ~ oo). Therefore, the non-dimensional  

boundary conditions are : 

u ( 0 )  = • (0) = ~ '  (o) = 0  
u , (oo)  = ~(oo)  = g>- (oo) = 0  (9) 

The reformulated stability Eqs. (8a, b) with bo- 

undary conditions (9) are complex-valued, 6th- 

order, linear system of homogeneous differential 

equations. 

~t +Re ( F~x + G ~y - Fzvy + G~uy + F~w ) (5b) 
+ Ro(H~v+ Hvz+ Fzu + Fuz-2Gv) - Covz=gzV 

The above equations (5a, b) is now rotated thr- 

ough an angle c~ as illustrated in Fig. 1, where 

e is the angle of  the new ,~ axis with respect to 

the tangential direction. The instabilities are as- 

sumed to be 2-dimensional vortices independent 

of new £'-direction, so in the rotated equations 

a /82  =0 .  
The stream function for the flow in the new 

(2~, P.)-plane is defined by 

2.3 Numerical  method 
The boundary conditions (9) are modified 

slightly but significantly. These conditions are 

expressed in the real and imaginary parts, 

Vg(o )  = U, (o )  = 0~(0) = 0,(0)  =0,  ] 0~'(0)I=l  0 :" (0 ) I=j  ( 1 0) '"U~ (co) = Ui'(oo) = 0~ (co) = 01 (oo) = 0~ (co) = 0~' (co) = 0  

with 1 0 - a ~ l / 1 ~ 1 0  -1. 
The computing procedure which use as the or- 

thogonal collocation code C O L N E W  for obtai- 

ning the neutral stability curve is quite similar to 
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that employed in simple and mult iple  shoot ing 

(Hwang and Lee, 2000). 

3. Results  and Discussion 

Classical hydrodynamic  l inear stability theory 

is based on an eigenvalue analysis of  the lin- 

earized equat ions of  mot ion  on the characteristics 

of  the fastest growing normal  mode. A flow is 

deemed unstable if  there exists a normal  mode  

with a posit ive growth rate for the given mean 

conditions.  

In neutral stability analysis, the basic mean 

flow parameter is the Reynolds  number,  R e .  The  

min imum R e  for which the flow is unstable is 

called the critical Reynolds  number,  Rec. It is 

assumed that there are fluctuations in nature 

that will provide  an initial per turbat ion at the 

wavelength of  the most unstable mode  which will 

then proceed to grow faster than any other  normal  

mode and dominate  the instability as long as 

nonl inear  effects remain unimportant .  

In this study, the spatial and temporal  stability 

analyses have been performed successfully for 

predicting the instability. The Type I instability 

mode appears in the form of  stationary spiral 

vortices at large R e  and posit ive angles direct ion 

of  e between the tangent line and circle which 

was drawn radius over the disk in Fig. 1. Whereas 

the Type II mode instability, also, has the form 

of  spiral vortices, but, at low R e  and negative 

angle of  6, relatively, its vortices move rapidly 

outward.  

We performed the stability computa t ion  at az- 

imuth angle s specified in the Table.  1. We ob- 

tained the neutral stability results for several 

values in the range --27.3°--<19.1 ° . (see Fig. 2, 

Cp=#0) In addit ion,  we computed the spatial 

amplif icat ion contours at the azimuth angle 6 = 

12.5 ° , 13.3 ° and 15 ° and the temporal  amplifica- 

tion contours  at the azimuth angle 6 = 1 2  ° , 13.3 ° 

and 15 ° near the 'nose '  of  the neutral  stability 

curves. 

The present stability Eqs. (8a, b) are slightly 

different with those of  Fai ler  (1991), but our  ob- 

tained results, in particular,  on Type II instabi- 

lity are considerably different. However ,  both 

Table 1 Azimuth angles numerically calculated for 
the stationary disturbance wave & the mov- 
ing disturbance wave 

Amplification 

Spatial 

Temporal 

Type of Waves 

Stationary wave 

11.29 ° , 12 ° , 13.3 ° , 15 ° 

Moving waves 

12.5 ° , 13.3 °, 15 ° 

12 °, 13.3 ° , 15 ° 

0,8 

0.7 [ ~pe !~etabi~q 
Type I 

1 
0 6  

GR 0.5 

0.4 
7 

0.3 

0.2 

0,1 

0.0 
0 

Fig. 2 

No. Rot ~ t,~ Cp ] 
I 11200 I 9.1 j0.747 I 27.13 I 
2 138s.19 I8 .s  1° .6  I a741 
a I 270.22 113.3 I 0.3s8 I -5.13 1 

200 400 6130 800 1000 1200 

Re 

4-dim. neutral stability curves for the 

Kfirmfin layer 

results agree within reasonable limit, considering 

characteristic of  both neutral stability curves are 

almost  the same. 

The results show that the flow is always stable 

for the disturbance whose wave number  aR >0.75 

at the neutral stability curve o f  the moving  wave. 

The first unstable condi t ion for Type II instabi- 

lity mode is the band of  wave numbers 0 .0<  aR~< 

0.587 with azimuth angles - -27 .3°~<e<- -13 .6  °. 

Also,  the similar condi t ion  for Type I instability 

mode is 0 . 2 < a R < 0 . 7 5  with 8 . 2 ° < 6 <  19.1 °. These 

two stability results are rather more complete 

and they give relatively lower values of  critical 

Reynolds  numbers than those of  Fai ler  (1991). 

The  spatial amplif icat ion contours  for the sta- 

t ionary disturbance waves are presented in the 

R e - c  plane : see Fig. 3. 

Our neutral stability results are presented in 

terms of  a parameter A, which has no r - d e -  

pendence, where 

A = a c R e  ~tz ( 11 ) 
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2 8 -  

2 4 -  

2 0 -  

16 -  

1 2 -  

2 0 0  

Fig. 3 

• Experimental  Data  

4 0 0  6 0 0  800  1000  1200  1400 

Re 
Spatial amplification contours for the K~r- 
mfi.n layer, corresponding to the Type I sta- 
tionary disturbances in the R e - e  plane 

The parameter A is proportional to the physi- 

cal wave number 2zr/L (where L is the wavele- 

ngth). If Re =457 is fixed, the spatial amplifica- 

tion rate (As) is increased as the azimuth angle is 

decreased from 14 ° to 11 ° in Fig. 3. This figure 

shows that the physical wave number A is bound- 

ed within 3--5. Surely, this is the reason why the 

azimuth angle is shown in the limited angle. Also, 

some of our neutral stability results are presented 

in the Re -B  plane, where 

B :  /~RR e u2- 2:rfDl/~ (12) 
COD 

This parameter B has no r-dependence:  it is 

proportional to the physical frequency f .  Con- 

stant frequency paths are horizontal straight lines 

in the stability Re-B plane: see Fig. 4. But, the 

wave number aR corresponding to the constant 

value of B nonlinearly decreases as Re increases. 

(Namely, the wavelength gradually increases as 

the radius increases) 

The concept of constant physical wave number 

or frequency is important in interpreting the phy- 

sical implications of our numerical results on 

spatial amplification and temporal amplification, 

since a path of constant physical wave number or 

frequency corresponds to a path on the stability 

plane as a disturbance travels downstream in the 

primary period. The basic premise here is that the 

physical wave number of a stationary disturbance 

and the physical frequency of a moving disturb- 

ance will not change while the disturbance is still 

-100 
2 0 0  

As=O 

1 5 

300 400 500 600 7O0 8~0 

Re 

(a) 

200 - 

B l o 0  - 

o -  

-100 
200 

100 - 
B 

-100 
200 

Fig. 4 

..... ~ B* 

1 5 

Re 

(b) 

As=0 

• ~o ' ,;o ' ~;o " do " ,;o ' ,;o 
Re 

(c) 

Spatial amplification contours for moving 
disturbances at (a) e=12.5 °, (b) 13.3 °, and 
(c) 15 ° in the Re-B plane 

small even in stability plane. 

The spatial amplification rate of a disturbance 

(e A~) can be obtained for the constant frequency 

as follows : 

As=--  f~eR;~ d R e =  fReR; azD-1/ZRe-tl2dRe (13) 

where Reo is the Reynolds number on the neutral 

curve and D1 is the boundary-layer thickness 

newly defined. The neutral curve thus corres- 

ponds to As=0.  From the amplification contours 
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Table 2 Numerical results of constant physical fre- 
quency B* from e=12 .5  to 15 ° 

Amplification 
e(°) 

12.5 13.3 15 

Spatial 26 60 210 

Table 3 Numerical results from e=11.29 to 15 ° 
I 

e : B 
L 

11.29 

12.0 

13.3 

15.0 

Rec~t ~R 
271.43 0.0 

270.86 0.8045 

270.22 1.9807 

271.02 3.5517 

O'R 

0.390 

0.400 

0.386 

0.380 

[ 0 . 0  

13.24 

32.55 

58.47 

40 

20 

B 0 

-20 

200 

250 

AT=0 

Re 
(a) 

in Fig. 4, the most  s t imula ted  ampl i fy ing  fre- 

quency which  is well sus ta ined p r imary  cons tan t  

physical  f requency increases from B = 2 6  to 2 l0 as 

the angle of  e increases from 12.5 ° to 15 °. 

The  p r imary  s tar t ing va lue  of  cons tan t  physical  

f requency is ca lcula ted as s h o w n  in Tab le  2. 

The  t empora l  ampl i f ica t ion  rate of  a d i s turb-  

ance ( e  AT ) can  be ob ta ined  for the cons tan t  fre- 

quency as fo l lows ;  

Ft(Re) U r(Re) 
A t = /  B i ~ d t = l  /3iD-'~ZRe-~2dRe (14) 

Jto(Reo ZJl d(Reo) 

B 

200 

150 

X00 

50 

0 

-50 

200 

4O0 

where Reo is the Reynolds number on the neutral 

curve. The neutral curve is thus AT=0.  300 

From the ampli f icat ion contours in Fig. 5, 
2O0 

the favored ampl i fy ing  frequency which  is well B 

sus ta ined p r imary  va lue  increases f rom B = I 0  to 
100 

75 as the angle  of  e increases f rom 12 ° , 13.3 ° 

and  15 °. The  p r imary  s tar t ing va lue  of  cons tan t  0 

f requency is s h o w n  in Tab le  3. 

F r o m  the above  spat ia l  and  t empora l  ampl i -  -100 
200 

f icat ion contours ,  at the f requency of  e =  1 5 °, the 

smal l  d i s tu rbance  is ampl i f ied quick ly  by as much  

as el0 as it t ravels  d o w n s t r e a m  from R g 0 : 2 7 9 . 8 0  Fig. 5 

to R e = 5 4 4 . 8 3 .  We  find out  tha t  the most  favored 

f requency decreases as e decreases f rom 15 ° to 

11.29 °. In addi t ion ,  the value  of Rcerlt has  a mini-  

m u m  at e = 1 3 . 3  °. (see, T a b l e  3) 

A l t h o u g h  it is k n o w n  tha t  the l inear  s tabi l i ty  

theory  can be used only  for predic t ing  o f  insta-  

bi l i ty  at the low Reyno lds  number ,  we ob ta ined  

1 5 10 

300 400 500 600 700 800 

Re 

(b) 

A-r = O /  

Re 

(c) 

Temporal  amplification contours for (a) e = 

12 ° (b) e=13 .3  ° and (c) e = 1 5  ° in the (Re, 
B) -planes 

the r easonab le  full detai ls  of  ampl i f i ca t ion  con-  

tours  at the larger  Reynolds  n u m b e r  for va r ious  

~ " S .  
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Table 4 Experimental results from 1200 rpm to 1800 rpm 

1395 

Revolution per Minute 1200 1400 

Distance from center to the point of instability 164.9 155.8 

1600 

140.3 

1800 

127.1 

150.7 

462.8 

548.7 

Distance from center to the point of transition to turbulent (mm) 183.9 172.6 

Re at the point of instability 490.2 500.4 

Re at the point of transition to turbulence 546.7 554.3 

165.9 

481.8 

569.6 

Table 5 Reynolds number at the point of instability 

Description Re at the point of instability 

Experimental Results 462~ 500 

Gregory et al. (1955) 430 

Chin and Litt (1972) 410~510 

waves. The disturbed flow was observed using 

a smoke visualizat ion apparatus over rotating 

disk system. In the stationary disturbance waves, 

about 30 spiral vortices are observed. The faster 

the disk rotates from 1200 rpm to 1800 rpm, the 

shorter the distance from the center of  the disk 

to the point of  instability and the point  of  tran- 

sition is. (see, Table  4 and Fig. 6) When we 

compared the stability results and experimental  

data of  the present work with the experimental  

data of  Gregory et a1.(1955) and Chin and Litt 

(1972) for the stationary disturbance wave, the 

numerical  and experimental  results agree com- 

parably with the previous experimental  data. (see, 

Fig. 3 and Table  5) 

4. Conclusions 

(a) 

Fig. 6 

(b) 
Flow pattern on a disk rotating in air at 

(a) 1600 and (b) 1800rpm by using a white 

titanium tetrachloride gas 

The hydrodynamic  instability of  Karmfin bo- 

undary- layer  flow due to a rotating disk has been 

experimental ly investigated for the disturbance 

The stability of  the 3 -D  boundary- layer  flow 

introduced in a rotating disk system has been 

numerical ly studied by employing the linear sta- 

bility theory and experimented. The modified sta- 

bility equat ions are accurately solved by eigen- 

function analysis as a two-po in t  boundary -va lue  

problem. The results yield more complete  4-  

dimensional  neutral stability curves correspond- 

ing to the Type l and II instabilities. 

Spatial and temporal  amplif icat ion contours  

have been computed for both the moving  disturb- 

ance wave and stationary disturbance wave. F rom 

the spatial amplif icat ion contours for moving 

disturbances in Fig. 4, the wave number  aR cor- 

responding to the constant  value of  B nonl inear ly  

decreases as R e  increases. The most stimulated 

amplifying frequency which is well sustained pri- 

mary constant physical frequency increases from 

B = 2 6  to 210 as the angle of  ~ increases from 

12.5 ° to 15 ° . F rom the temporal  amplif icat ion 

contours for moving disturbances in Fig. 5, the 




